
Web Service Composition with Volatile
Information

Tsz-Chiu Au Ugur Kuter Dana Nau

Department of Computer Science and Institute for Systems Research
University of Maryland, College Park, MD 20742, USA

email:{chiu,ukuter,nau}@cs.umd.edu

Abstract

In many Web service composition problems, information may be needed from
Web services during the composition process. Existing research on Web service
composition (WSC) procedures has generally assumed that this information will
not change. We describe two ways to take such WSC procedures and systemati-
cally modify them to deal with volatile information.

Theblack-boxapproach requires no knowledge of the WSC procedure’s inter-
nals: it places a wrapper around the WSC procedure to deal with volatile infor-
mation. Thegray-boxapproach requires partial information of those internals, in
order to insert coding to perform certain bookkeeping operations.

We show theoretically that both approaches work correctly. We present ex-
perimental results showing that the WSC procedures produced by the gray-box
approach can run much faster than the ones produced by the black-box approach.

1 Introduction

Most existing research on automated composition of semantic Web services has fo-
cused onWeb service composition(WSC) procedures, i.e., procedures for finding a
composition of Web services to accomplish a given task. In order to assemble a com-
position, a WSC procedure itself may need to retrieve information from Web services
while it is operating. Existing works have generally assumed that such information
is static, i.e., it will never change. For example, the Golog-based [1] and HTN-based
[2, 3] approaches both use the Invocation and Reasonable Persistence (IRP) condition.
The WSC procedures reported in [4, 5] are even more restrictive: they require that all of
the information needed by their procedures is provided by the user as input parameters.
We will refer to such procedures asstatic-informationWSC procedures.

Clearly there are many cases where the static-information assumption is unrealistic.
There are thousands of Web services whose information may change while a WSC
procedure is operating: for example, whether a product is in stock, how much it will
cost or how much has been bid for it, what the weather is like, what time a train or

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Web Service Composition with Volatile Information

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Computer Science,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

airplane will arrive, what seats are available for an airplane or a concert, what resources
are available in a grid-computing environment, and so forth.

This paper focuses on how to take static-information WSC procedures such as the
ones mentioned above, and translate them intovolatile-informationWSC procedures
that work correctly when information obtained from Web services may change.

Our primary contributions are as follows:

1. We provide a general procedural model for a class of WSC procedures. We
model them as trial-and-error search procedures that may try different possible
Web service compositions in order to find one that accomplishes the desired task.

2. We describe ablack-box approachfor translating static-information WSC pro-
cedures into volatile-information WSC procedures. In particular, we describe a
wrapper that can be placed around any WSC procedure, without needing to know
how the underlying composition procedure operates.

3. We describe agray-box approachfor translating static-information WSC pro-
cedures into volatile-information WSC procedures. This approach is based on
taking our procedural model mentioned above, and modifying it to deal with
volatile information—hence the same modification will work on any WSC pro-
cedure that is an instance of our general procedural model. We call this approach
a gray-boxapproach because it requirespartial knowledge about a WSC proce-
dure: namely, that the WSC procedure is an instance of our procedural model.

4. We state theorems saying that both the black-box and the gray-box approaches
work correctly on any WSC procedure that is an instance our general model.

5. We provide experimental results demonstrating that the gray-box approach pro-
duces volatile-information WSC procedures that may run exponentially faster
than the ones produced by the black-box approach. For example, in a set of
problems in which there were only seven information items that needed to be
retrieved from Web services, the procedure produced by the gray-box approach
ran 50 times as fast as the one produced by the black-box approach.

It also would be possible to define awhite-boxapproach, namely to take the code for
the WSC procedure and rewrite it by hand. But this approach would be labor-intensive
and it would only extend a single composition procedure, hence we do not consider it
in this paper. Our results show that in comparison with the black-box approach, the
gray-box approach already can provide substantial speedups without having to delve
into all of the details of the original WSC procedure.

2 Procedural Model of Web Service Composition

Existing approaches for Web Service Composition formulate the problem in different
ways, depending mainly on how the developers of those approaches perceive the prob-
lem. Examples include the following:

2

• In [1], the states of the world and the world-altering actions are modeled as Golog
programs, and the information-providing services are modeled as external functions
calls made within those programs. The goal is stated as a Prolog-like query and the
answer to that query is a sequence of world-altering actions that achieves the goal,
when executed in the initial state of the world. During the composition process,
however, it is assumed that no world-altering services are executed. Instead, their
effects are simulated in order to keep track of the state transitions that will occur
when they are actually executed.

• In [2], the WSC procedure is based on the relationship between the OWL-S process
ontology [6] used for describing Web services andHierarchical Task Networksas in
HTN Planning [7]. OWL-S processes are translated into tasks to be achieved by the
SHOP2 planner [7], andSHOP2 generates a collection of atomic process instances
that achieves the desired functionality.

• [3] extends the work in [2] to cope better with the fact that information-providing
Web services may not return the needed information immediately when they are
executed, or at all. TheENQUIRER algorithm presented in this work does not cease
the search process while waiting answers to some of its queries, but keeps searching
for alternative compositions that do not depend on answering those specific queries.

• [4] models Web services and information about the world using the “knowledge-
level formulation” first introduced in thePKS planning system [8]. This formulation
models Web services based not on what is actually true or false about them, but what
the agent that performs the composition actually knows to be true or false about
their operations and the results of those operations. A composition is formulated
as a conditional plan, which allows for interleaving the executions of information-
providing and world-altering services, unlike the works described above.

Despite their differences, the aforementioned approaches have the following fea-
tures in common:

1. The WSC procedure is given the specification of the Web services written in a
formal language such asOWL-S [6], and a goal to be accomplished in the world.

2. The WSC procedure does a trial-and-error search through some space of possi-
ble solutions, to try to find a complete solution. Asolution for a Web service-
composition problem is a set of services with ordering constraints such that,
when executed, the services achieve the desired functionality required by the
input service-composition problem.

3. The WSC procedure does not have a complete knowledge of the state of the
world; the missing information must be obtained from information-providing
services. The WSC procedures execute the information-providing services to
obtain the missing information either during the composition process or during
the execution of the composition.

4. The WSC procedure does not execute any Web services that have world-altering
effects during the composition process.

3

Procedure General-WSC(P)
S0 ← create-initial-state (P); OPEN← {S0}; ANSWERS← ∅
loop

insert all new answers for the pending queries (if any) into ANSWERS
select a node S from OPEN and remove it
if solution (S, P, ANSWERS) then return extract-solution (S, P)
issue queries about zero or more unknowns in S that are not in ANSWERS
OPEN← (OPEN \ {S}) ∪ children-of (S, P)

Figure 1: TheGeneral-WSC procedure is an abstract model of many static-
information WSC procedures. It is based on the observation that most existing WSC
procedures are trial-and-error search procedures that may try different possible Web
service compositions in order to find one that accomplishes the desired task.P is the
problem description, and the initial stateS0 is derived from it.

5. The information returned from the information-providing services is static.This
is the assumption that our work is intended to overcome.

We now describe a way to take a class of WSC procedures that have the character-
istics mentioned above, and modify them to work with volatile information. We start
by defining anunknownto be any item of information that a WSC procedure needs
to obtain to carry out the composition process. For an unknownu, a WSC procedure
sends aqueryqu to the available information-providing Web services that can provide
the valuevu for u. The value foru is returned by a Web service to the WSC proce-
dure as ananswerfor the queryqu. A query issued by a WSC procedure is said to be
pendingif no answers have been received for that query. Otherwise, it iscompleted. A
pending query becomes completed if all answers for that query is received.

Our procedural model is theGeneral-WSC procedure shown in Figure 1. This
model captures the procedural behavior of most existing service-composition tech-
niques. Examples include [1, 2, 3, 4, 5], and others.

In theGeneral-WSC procedure, eachstateis an abstract representation of a partial
solution to the WSC problem. IfS is a state, then each childS′ of S is obtained by
making some kind of refinement to the partial solution represented byS. We assume
that whether or notS can be refined to produceS′ will depend on someprecondition
pre(S, S′), whose value may betrue or false depending on the values of some of
the unknowns. Ifpre(S, S′) = false then the refinement cannot be performed, hence
S′ is a dead end. But ifpre(S, S′) = true then the refinement can be performed. In
the latter case, eitherS′ is a solution to the WSC problem or else it has one or more
children of its own. A state is aterminalstate if it is either a dead end or a solution.

LetS0 be the initial state of a WSC problem, and let〈S0, S1, . . . , Sn〉 be a sequence
of states such that eachSi+1 is a child ofSi andSn is a terminal node. Then from the
above assumptions, it follows thatSn is a solution if and only if

pre(S0, S1) ∧ pre(S1, S2) ∧ . . . ∧ pre(Sn−1, Sn) = true.

4

The variableOPEN is the set of all states that the WSC procedure has generated but
has not yet been able to examine. The variableANSWERS is the set of all answers
that have been returned in response to a WSC procedure’s pending queries; i.e.,

ANSWERS = {(u, v) : a Web service has returned the valuev for the unknownu}.

General-WSC begins with a set calledOPEN that contains only the initial state
S0. Within each iteration of the loop,General-WSC does the following:

• It updatesANSWERS to include any answers that have been returned in response
to its queries.

• It selectsS ∈ OPEN to work on next. Which node is selected depends on the
particular WSC procedure. For example, in both the Golog-based [1] andSHOP2-
based [2] approaches, the search depth-first. ThePKS-based approach reported in
[4] can perform either depth-first or breadth-first search.

• It checks whether or notS constitutes a solution (i.e., a composition that achieves
the goals of the current WSC problem). In the pseudocode of Figure 1, this check
is represented by thesolution subroutine. The definition of thesolution subroutine
depends on the particular instance ofGeneral-WSC. For example, in [1, 2, 3],so-
lution checks whether or not the sequence of world-altering services can really be
executed given the information collected from the information-providing services
during the composition process. In thePKS-based approach of [4], the definition of
solution includes (1) checking for the correctness and consistency of the knowledge-
level databases thatPKS maintains, and (2) checking for whether the current solu-
tion achieves the goals of the current WSC problem.

• If S is not a solution, then the procedure has an option to issue queries about the
unknowns that appear inS. Then it generates the successors ofS, and inserts them
into theOPEN set. Thechildren-of subroutine is responsible for this operation,
and again the details depend on the particular WSC procedure. In [1],children-of
a state is defined through theTrans rules described in that work. A successor state
generated by those rules specify the next Golog program to be considered by the
composition procedure as well as the current partial composition generated so far.
In HTN plannning based approaches as in [2, 3], successor states are computed via
task-decomposition techniques.

3 Dealing with Volatile Information

The previous section dealt withstatic-informationWSC procedures, i.e., WSC proce-
dures for the case where the values of the unknowns will never change. We now con-
sidervolatile-informationWSC procedures, i.e., WSC procedures for the case where
values of the unknowns may change over time.

Figure 2 illustrates the life cycle for the value of an unknownu. Suppose a WSC
procedure issued a queryqu to a Web serviceW at timet = tissue(qu), asking for the
value ofu. The answer for this query will arrive at timetreturn(qu) = tissue(qu) +

5

TimeLine

query qu issued
at time tissue(qu)

value vu returned
at time treturn(qu)

vu expired
at time texpire(qu, vu)

lag time tlag(qu) valid time tvalid(qu, vu)

Figure 2: A typical execution of an information-providing service. Above,tissue(qu)
is the time that a WSC procedure issues a query to a Web service for the value of an un-
knownu. treturn(qu) is the time at which the value ofu is received, andtexpire(qu, vu)
is the time point after which that value is no longer guaranteed to be valid.

tlag(qu), where thelag timetlag(qu) includes both the time the information-providing
service takes to process the queryqu and the time delay due to network traffic.

In addition to the lag times of queries, we also need to consider (1) the time
needed to compute a preconditionpre(S, S′), and the time needed to perform the
refinementrefine(S, S′) that takes us from the stateS to the stateS′. Note that if
pre(S, S′) = false, then the time to performrefine(S, S′) is zero. Ifpre and refine
refer to unknowns whose values are not currently known, then computing them may
require sending queries to Web services, thereby incurring some lag times. We assume
that except for those lag times, the time needed to computepreandrefineis negligible.

Suppose the answer forqu specified the valuevu for u. Associated with the answer
is a valid time tvalid(qu, vu), i.e., the amount of time that the answer is guaranteed
to be valid.1 This means that the value of the unknownu is guaranteed to bevu be-
tween the timestreturn(qu) and texpire(qu, vu) = treturn(qu) + tvalid(qu, vu). At
texpire(qu, vu), the valuevu expires; i.e., u’s value is no longer guaranteed to bevu

after the timetexpire(qu, vu).
Since the values of the unknowns change over time, the correctness of a solution

composition returned a volatile-information WSC procedure depends on the values
gathered during the composition time. In order to guarantee that the returned compo-
sition will be executed correctly on the Web, we will define a solution composition to
beT -correct if it is guaranteed to remain correct for at least some timeT after a WSC
procedure returns that solution. In order to provide such a guarantee, we assume that a
value obtained for an unknownu will remain valid for at least timeT .

A static-information WSC procedure is said to besoundif whenever it returns a
solution to a WSC problem, the solution is a correct one. By analogy, we will say that
a volatile-information WSC procedure isT -soundif whenever it returns a solution, the

1Some WSC procedures provide a valid time explicitly. For example, hotel rooms can usually be held
without charge until 6pm on the night of arrival; and the web site at our university’s concert hall will hold
seating selections for several minutes (with a countdown timer showing how much time is left).

However, our approach does not actually need a valid time to be given explicitly, as long as there is a
mechanism to inform the WSC procedure immediately after an expiration has occurred. However, in that
case, the WSC procedure can no longer guarantee how long the solution will remain valid after it is returned,
because expirations may occur anytime after the solution is returned.

6

solution isT -correct.
In the following subsections, we introduce two approaches for taking static-

information WSC procedures and translating them into volatile-information WSC pro-
cedures. For both of them, if the original WSC procedure is sound, the translated
procedure will beT -sound.

3.1 The Black-Box Approach

[9] investigated how to generate plans in the presence of incomplete and volatile in-
formation. The authors provided a query management strategy that could be wrapped
around most automated-planning systems, to manage their queries to external informa-
tion sources.

Our black-box approach is a modified version of the approach described in [9].
The modifications are: (1) replace the planner with a WSC algorithm, (2) replace the
information sources with information-providing Web services, and (3) modify the strat-
egy to pretend that each unknownu’s expiration time istexpire(qu, vu)−T rather than
texpire(qu, vu). The latter modification is necessary to ensure that the solution returned
by the WSC procedure isT -correct.

[9] also described two query-management strategies that we can use with the black-
box approach:

• In the eagerstrategy, when the information collected from external information
sources is expired, the query-management strategy immediately re-issues the rel-
evant query or queries and suspends execution of the underlying WSC procedure
until the answers come back.

• In the lazy strategy, the query-management strategy does not immediately reissue
new queries about the expired information. Instead, it assumes that such information
is still valid and continues with the composition process until the underlying WSC
procedure generates a solution. At that point, the lazy strategy re-issues queries
about all expired information that that solution depends on, and suspends execution
of the WSC procedure until all of the answers is received.

If the same answers are received for the re-issued queries as before, these strategies
restart the WSC procedure from where it left off. With the lazy strategy, this means
the procedure immediately returns the solution and exits. Otherwise, the strategies
backtrack the WSC procedure to the first point where it made a decision that depends
on an unknown whose value has changed, and restarts the procedure from that point.

The following theorem establishes the correctness of the black-box approach:

Theorem 1 Let A be a WSC procedure that is an instance ofGeneral-WSC, and let
AB be the modified version ofA produced by the black-box approach. IfA is sound,
thenAB is T -sound.

For a detailed discussion and analysis on the black-box approach, please see [9].

3.2 The Gray-Box Approach

7

Procedure VI-General-WSC(P, T)
S0 ← create-initial-state (P); OPEN← {S0}; ANSWERS← ∅

loop
remove some or all expired answers from ANSWERS
insert all new answers for the pending queries into ANSWERS
select a node S from OPEN
if solution (S, P, ANSWERS) then

if S contains no unknowns whose values have expired or will
expire within time period T , then

return extract-solution (S, P)
else

remove zero or more values from ANSWERS that have expired or
will expire within time period T , and re-issue queries about them

OPEN← OPEN ∪ {S}
else

issue queries about zero or more unknowns in S that are not in ANSWERS
OPEN← (OPEN \ {S}) ∪ children-of (S, P)

Figure 3: TheVI-General-WSC procedure generalizes theGeneral-WSC to deal
with volatile information. It returns a solution to the WSC problem that will remain
correct for at leastT amount of time after the solution is returned.

Although the black-box approach described in the previous section is a simple and
a general technique to modify WSC procedures to deal with volatile information, it
has one drawback: it does not consider the internal operations of the underlying WSC
procedures, and therefore, it may not perform very efficiently in some WSC problems.
In this section, we describe another technique, called thegray-boxapproach, that takes
into account the internals of WSC procedures that are instances ofGeneral-WSC in
order to generalize them to deal with volatile information.

The gray-box approach is based on a modified version of theGeneral-WSC pro-
cedure, calledVI-General-WSC, that works with volatile information. This procedure
is shown in Figure 3. In this approach, we take an instance of the abstractGeneral-
WSC service-composition procedure, and translate it into the corresponding instance
of VI-General-WSC.

Like General-WSC, VI-General-WSC performs a search in the space of states,
but it also keeps track of theexpiredvalues for the unknowns for which it issued queries
previously, and maintains theANSWERS set accordingly. At each iteration, a state
S in OPEN is active, if for every unknownu that appears inS we have(u, v) ∈
ANSWERS, wherev is the value ofu in S. In other words, a state inOPEN is active
at a particular iteration ofVI-General-WSC, if all of the information that it depends
on is valid at that iteration. Otherwise,S is inactive. As an example, in Figure 4, the
solid squares are active states and the dashed squares are inactive ones.

The following theorem establishes the correctness of the gray-box approach:

Theorem 2 Let A be a WSC procedure that is an instance ofGeneral-WSC, and let
AG be the modified version ofA produced by the gray-box approach. IfA is sound,

8

.

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12 S13

S14

S15

u1 = v1

u1 = v2

u1 = v3

u1 = v4

u2 = v5 u2 = v6 u2 = v5
u2 = v6

Figure 4: An example snapshot of aVI-General-WSC search space. There are three
unknowns, and their current values areu1 = v3, u1 = v4, andu2 = v5. The squares
represent the states in the open list, and the circles represent the states that have already
been visited. The label on each edge(Si, Sj) gives a valueuh = vk that the refinement
refine(Si, Sj) depends on. For example,refine(S12, S14) only works if u2 = v5, and
the stateS14 is a valid refinement ofS1 only if both u1 = v4 andu2 = v5. The
solid squares denote active states; these represent valid refinements ofS1. The dashed
squares denote inactive states: these once were valid refinements ofS1, but they are
not currently valid because some of the information they depend on has expired.

thenAG is T -sound.

This theorem holds because (1) given a set of unknowns and possible values for them,
both A andAG have the same search traces, and (2)AG terminates only when the
solution satisfies thesolution function and the values the solution depends on remain
valid for timeT . Therefore, the solution isT -correct only ifA is sound.

Earlier, for the black-box approach, we defined two query-management strategies:
the eagerand lazy strategies. In the gray-box approach, since we have some control
over the way underlying WSC procedures perform their search, our query-management
strategies can be more sophisticated. For example, here are two query management
strategies for use with the gray-box approach:

• The active-only strategyselects the first active state from theOPEN set, if there
exists any. If there is no active state in theOPEN set, then the composition process
stops until some states become active again. In this case, when an answer for a query
expires, we immediately re-issue that query.

• Theactive-inactive strategyfirst attempts to select an active node, if there are active
nodes in theOPEN list. If not, it attempts to select an inactive node, assuming that
the values for the unknowns that this selection depends on will become valid at some
point later in the composition process. In this case, we do not reissue a query after
its value is expired; instead, we treat the expired values as if they are not expired.
When we get to a goal state, we reissue all the queries for all expired values that
some goal state in theOPEN set depends on.

9

4 Implementation and Experimental Evaluation

In our experiments, we used both the black-box and gray-box techniques to generate
volatile-information WSC procedures. In particular, we used the static-information
WSC procedure described in [2], which is an instance of the abstractGeneral-WSC
procedure. This WSC procedure is based on a translation of OWL-S process models
into HTN methods and operators for use within theSHOP2 planning system [7]. In
our experiments, we assumed that this translation process had already been carried out,
hence we started directly with theSHOP2 methods and operators. We implemented
the following four volatile-information WSC procedures:

• Eager andLazy: black-box translations of the static-information WSC procedure
using the eager and the lazy strategies, respectively.

• Active-Only and Active-Inactive: gray-box translations of the static-information
WSC procedure using the active-only and the active-inactive strategies, respectively.

For our experiments, we used two service-composition scenarios. The first is the
Delivery-Company application described in [3]. In this domain, a delivery company
is trying to arrange the shipment of a number of packages by coordinating its several
local branches. The company needs to query Web services to gather information from
its branch offices about the locations and the availability of vehicles (i.e., trucks and
planes) and the status of packages. The goal is to generate a sequence of commands
to send as Web service calls to the vehicle controllers, such that the execution of these
commands will route all of the packages to their final destinations.

Our second service-composition scenario involves a simplified model for grid- and
utility-based computing [10]. In our scenario, there are a number of Grid Services
for reserving computing resources owned by several different companies on the Web.
Some of them are information-providing grid services giving the current workload,
memory usage, software license, etc. The WSC procedure’s goals are to figure out
which computing resources to use for a given computing task, and to generate a com-
posite Grid Service that actually makes the reservation once it is executed. Since the
workload and the memory usage of the machines keep changing, it is necessary for the
WSC procedure to deal with the change of information during composition.

We randomly created 7 delivery-company problems and 8 grid-computing prob-
lems. Then, in the description of each problem, we randomly insertedn number of
unknown symbols, forn = 1, . . . , 9. For each number of unknowns, we ran each
problem 50 times and averaged the running times. Every time a query was issued, we
generated the lag time for that query and the valid time for the answer by choosing
numbers at random from the time interval0.5 ≤ t ≤ 2.5 seconds.

The results are shown in Figures 5 and 6 on Delivery-Company and Utility-
Computing problems using an Intel Xeon 2.6GHz CPU with 1GB memory. Each data
point is an average of350 and400 runs, respectively. Missing data points correspond
to experiments where one or more of the runs went for longer than 30 minutes.

In these experiments, the two WSC procedures produced by the gray-box approach
(theActive-Only andActive-Inactive procedures) performed much better than the two
WSC procedures produced by the black-box approach (theEager and Lazy proce-

10

Active-Only

Active-Inactive
Eager

Lazy

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9
Number of Unknowns

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

Figure 5: Average running times of our algorithms on Delivery-Company problems, as
a function of the number of unknowns.

dures). This occurred because the former were able to explore alternative compositions
for a problem while awaiting responses from the information-providing services. The
improvement in running time was roughly exponential. For example, with 7 unknowns
Active-Inactive took roughly 1/50 the time required by theLazy procedure.

In addition, theActive-Inactive procedure performed much better than theActive-
Only procedure.2 The reason is that in the case when there are no active nodes (i.e.,
when every state in theOPEN set depends on an unknown whose value has ex-
pired), Active-Only suspends execution while waiting for responses from Web ser-
vices, whereasActive-Inactive keeps working: it expands the inactive nodes assuming
the responses they depend on may become valid again at some point in the future. This
enablesActive-Inactive to explore many more alternative compositions thanActive-
Only in the same amount of time.

Note that the running times of our WSC procedures grow exponentially with the
number of unknowns. The reason is that it is getting harder to get all required valid
values simultaneously as the number of unknowns increases. In order to further inves-
tigate the effect of valid times on the behavior of our WSC procedures, we also did
another set of experiments in which we varied the upper bounds for the valid times of
the answers for our WSC procedures. In these experiments, we used the same exper-
imental scenarios described above with2.5, 3, 5 and5.0 seconds as upper bounds for
the valid times in our random simulation.

Figures 7 and 8 show the results of these experiments on the Delivey-Company
and Utility-Computing problems, respectively. As shown in these figures, the perfor-
mances of our procedures increase dramatically with the increasing valid times for the
answers of their queries. TheActive-Only procedure was able to solve the problems

2Analogously,Lazy performed much better thanEager. This confirms the results reported in [9].

11

Active-Only

Active-Inactive

Eager

Lazy

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9
Number of Unknowns

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

Figure 6: Average running times of our algorithms on Utility-Computing problems, as
a function of the number of unknowns.

with 9 unknowns, which it was not able to solve before. TheActive-Inactive procedure
outperformedActive-Only in all cases. Finally, the performance ofActive-Inactive
increased expoenentially with the increasing valid times. This is because, when the
values obtained for the unknowns do not expire very quickly as in our first set of exper-
iments,Active-Inactive quickly finds a solution as it expands inactive states as well as
active ones and returns it before any value that that solution depends on expires.

5 Related Work

In addition to the service-composition techniques [1, 2, 3, 4] described earlier, another
WSC procedure that fits into our framework is a technique based on anestimated-
regressionplanner calledOptop [5]. As an instance of theGeneral-WSC procedure,
a state is asituationin Optop, which is essentially a partial plan. Thesolution function
checks whether the current situation satisfies the conjunction of the goal literals given to
the planner as input, and thechildren-of function computes a regression-match graph
and returns the successors of the current situation.

[11] is another WSC approach that also fits into our framework. It is based on
a partial-order planner that uses STRIPS-style services translated from DAML-S de-
scriptions of atomic services to compose a plan. As an instance of theGeneral-WSC,
a state is a partial-order plan; thesolution function checks if there is any unsatisfied
subgoal in a plan, and thechildren-of function generates child nodes by either instan-
tiating operators or using external inputs or preconditions to satisfy the subgoals. By
using our approach, the extended procedure might obtain information about the condi-
tions of the subgoals though Web services during planning.

In [12] and [13], a planning technique based on the “Planning as Model Checking”

12

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
vg

. C
PU

 T
im

es
 (s

ec
.s

)

Active-Only (vt=2.5) Active-Inactive (vt=2.5) Active-Only (vt=3.5)
Active-Inactive (vt=3.5) Active-Inactive (vt=5.0) Active-Only (vt=5.0)

Figure 7: Average running times of our algorithms on Delivery-Company problems
with varying number of unknowns and valid times for the answers of queries. In each
case, “vt” denotes the upper bound for the valid times used in the experiments.

paradigm is described for the automated composition of Web services. The BPEL4WS
process models was first translated into state transition systems that describe the dy-
namic interactions with external services. Given these state-transition systems, the
planning algorithm, using symbolic model checking techniques, returns an executable
process rather than a linear sequence of actions. It is not immediately clear to us if this
approach fits into the trial-and-error framework that our approaches are based on.

6 Conclusions and Future Work

In this paper, we have described two approaches for taking WSC procedures designed
to work in static-information environments, and modifying them to work correctly in
volatile-information environments.

The black-box approach requires no knowledge of the internal operation of the
original WSC procedure. It puts a wrapper around the procedure to deal with the
volatile information.

The gray-box approach requires some knowledge of the original WSC procedure,
but only partial knowledge: it requires knowing that the original procedure is an in-
stance of ourGeneral-WSC. The gray-box approach works by inserting some addi-
tional bookkeeping operations at various points in the instances ofGeneral-WSC.

Our experimental results show that despite the simplicity of these modifications,
the resulting volatile-information WSC procedures can perform much better than the
ones produced by the black-box approach. This is because the modifications enable the
volatile-information WSC procedure to explore alternative Web service compositions
while waiting for its queries to be answered.

13

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9
Number of Unknowns

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

Active-Only (vt=2.5) Active-Inactive (vt=2.5) Active-Only (vt=3.5)
Active-Inactive (vt=3.5) Active-Only (vt=5.0) Active-Inactive (vt=5.0)

Figure 8: Average running times of our algorithms on Utility-Computing problems,
with varying number of unknowns and valid times for the answers of queries. In each
case, “vt” denotes the upper bound for the valid times used in the experiments.

This paper is just a first step in the development of WSC procedures for volatile-
information environments. There are several important topics for future work:

• There are situations in which some of the valid times are so short that the WSC pro-
cedure cannot finish its task due to an overwhelmingly large number of expirations.
Furthermore, there are situations in which the WSC procedure can never get hold
of valid values of some of the unknowns simultaneously, and thus it is impossible
to return a valid solution. We would like to determine what kinds of conditions are
sufficient to guarantee that our procedure will terminate with a solution.

• Like most of the previous work on WSC procedures, we have assumed that the WSC
procedure does not execute any Web services that have world-altering effects during
the composition process—just the information-providing services. We intend to gen-
eralize our work to accommodate the execution of services that have information-
providing effects, world-altering effects, or both during service composition.

• Even more generally, we are interested in allowing the possibility of interleaving
composition and execution—e.g., to allow the WSC procedure to execute a portion
of the composition before generating the rest of the composition.

• We believe the gray-box approach can be made even more efficient by extending it to
make use of knowledge of what the search space looks like, and what the solutions
should look like.

Acknowledgment. This work was supported in part by NSF grant IIS0412812 and
AFOSR grant FA95500510298. The opinions expressed in this paper are those of
authors and do not necessarily reflect the opinions of the funders.

14

References

[1] McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services.
In: KR-2002, Toulouse, France (2002)

[2] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics1 (2004) 377–396

[3] Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during
planning for web services composition. In: ISWC-2004. (2004)

[4] Martinez, E., Lesṕerance, Y.: Web service composition as a planning task: Exper-
iments using knowledge-based planning. In: ICAPS-2004 Workshop on Planning
and Scheduling for Web and Grid Services. (2004)

[5] McDermott, D.: Estimated-regression planning for interactions with web ser-
vices. In: AIPS. (2002)

[6] OWL Services Coalition: OWL-S: Semantic markup for web services (2004)
OWL-S White Paper http://www.daml.org/services/owl-s/1.1/owl-s.pdf.

[7] Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.:
SHOP2: An HTN planning system. JAIR20 (2003) 379–404

[8] Petrick, R.P.A., Bacchus, F.: A knowledge-based approach to planning with
incomplete information and sensing. In: AIPS. (2002)

[9] Au, T.C., Nau, D., Subrahmanian, V.: Utilizing volatile external information
during planning. In: ECAI. (2004)

[10] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the
grid: An open grid services architecture for distributed systems integration.
http://www.globus.org/research/papers/ogsa.pdf (2002)

[11] Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing services
described in daml-s. In: AAMAS Workshop on Web Services and Agent-based
Engineering. (2003)

[12] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: AIMSA. (2004)

[13] Traverso, P., Pistore, M.: Automated composition of semantic web services into
executable processes. In: ISWC. (2004)

15

